
PENN STATE

Getting started with OpenFOAM

Eric Paterson

Senior Scientist, Applied Research Laboratory
Professor of Mechanical Engineering

The Pennsylvania State University
University Park, PA 16802 USA

Eric Paterson/ Getting started with OpenFOAM

PENN STATE
Acknowledgements

These slides are based upon training slides from previous workshops.

Håkan Nilsson, Department of Applied Mechanics, Chalmers University of
Technology, OpenFOAM Workshop Training 2009

Gianluca Montenegro, Department of Energy, Politecnico di Milano, OpenFOAM
Workshop Training 2008

Eric Paterson/ Getting started with OpenFOAM

PENN STATE
Learning outcomes

You will learn ...

to boot the USB-Stick with Kubuntu and test the OpenFOAM-1.5-dev installation

to understand the difference between different OpenFOAM versions

the principles of installing OpenFOAM

how to compile all of OpenFOAM

how to understand and modify the OpenFOAM environment

the OpenFOAM directory organization

OpenFOAM user directory organization

OpenfOAM user development compilation procedure

some useful Linux commands and concepts

Eric Paterson/ Learning outcomes

PENN STATE
USB-Stick for OFW5

A bootable USB-Stick has been prepared for the 5th OpenFOAM Workshop. You can
get instructions on how to use it from:

Paper copy in Workshop packet

http://web.student.chalmers.se/groups/ofw5/Instr.htm

http://web.student.chalmers.se/groups/ofw5/Instr.pdf

Link to the instructions from the Desktop (this assumes you have already figured it
out!)

Eric Paterson/ USB-Stick for OFW5

http://web.student.chalmers.se/groups/ofw5/Instr.htm
http://web.student.chalmers.se/groups/ofw5/Instr.pdf

PENN STATE
What’s on the USB-stick?

Workshop material (program, abstracts, presentations and training material) which
can be updated automatically via the Internet.

Fully operational Linux operating system based on Kubuntu (Ubuntu 10.04 +
KDE), and lots of useful CAE software including OpenFOAM (including pyFoam,
cgnstools funkySetFields, groovyBC and simpleFunctionObjects), Open
CASCADE, calculix, paraview with Takuya’s OpenFOAM reader, enGrid, netgen,
gmsh, blender, freecad, qcad, elmer, gerris, xfoil, bladedesigner, mittel, skv,
octave, yacas and many more.

The workshop material is located in the OFW5 folder which resides in the
USB-stick’s root-directory and can be accessed without booting the stick. If you
boot from the USB-stick, you will find a link labeled 5th Workshop in the Desktop
Folder which takes you there - “cd /cdrom/OFW5” for those who dislike GUIs.

Eric Paterson/ USB-Stick for OFW5

PENN STATE
How to boot it?

On “standard” laptops and PCs, things should be straight forward.
1 Simply plug the USB-stick in and boot your machine.
2 You will be asked for the language you prefer before you get to the kubuntu splash

screen.
3 Select “Try Kubuntu without installing”.
4 Booting your machine from the USB-stick will not change your normal operating system

in any way.
5 Later, if you like, you have the option of installing Kubuntu and the included software on

your computer permanently.

If the machine boots from harddisk and not into Kubuntu, you will have to change
the boot order in the BIOS.

1 You can enter the BIOS by pressing a specific key during start-up (usually Del, F1, F2,
F10, F12 - watch out for instructions on the screen during the boot procedure).

2 In the BIOS, make sure that the USB device is booted in preference to anything else, or
choose a one-time boot from the USB device.

Eric Paterson/ USB-Stick for OFW5

PENN STATE
How to boot in a VirtualBox?

This is for people who would like to run the USB-stick within their normal operating
system (Linux, Mac OS X, Windows).

Here, we assume that the VirtualBox-software is installed on your computer and
that you are familiar with the command line (the “Terminal Window”) or at least
know where to find it.

You will also need to have administrative rights on your machine, ie. you are
allowed to do “sudo somecommand”.
The general procedure is as follows:

1 Plug in the USB-stick
2 Find out which device the USB-stick is
3 Create a raw disk file using “VBoxManage internalcommands createrawvmdk”. NOTE:

this command is machine specific. Please see the detailed notes for Linux, Mac, or
Windows.

4 Create a new virtual machine in VirtualBox and attach the raw disk file that you just
created

5 Boot the virtual machine. It should boot from the USB-stick

Eric Paterson/ USB-Stick for OFW5

PENN STATE
Run the icoFoam/cavity tutorial to test the installation

Type the following commands to test the installation by running the icoFoam/cavity
tutorial:

mkdir $WM_PROJECT_USER_DIR/run
cp -r $FOAM_TUTORIALS/icoFoam/cavity $FOAM_RUN
run
cd cavity
blockMesh
icoFoam

You should get lots of text and numbers in your terminal window – we will examine this
more later.

Post-process by typing:

paraFoam

You can also type

foamInstallationTest

and search the output for possible problems

Eric Paterson/ USB-Stick for OFW5

PENN STATE
Which version is on the USB-Stick?

We are using 1.5-dev

This is the current version released by the OpenFOAM-extend project

The OpenFOAM-extend project is an open-source development version

1.5-dev contains important libraries, solvers, and utilities which greatly extend the
core OpenFOAM library

Eric Paterson/ Different versions

PENN STATE
Where to get OpenFOAM, and a note on different versions

1 OpenFOAM-1.6 is distributed by OpenCFD, at www.openfoam.org
2 OpenFOAM-1.6.x is a patched version of OpenFOAM-1.6 which is obtained from

a git repository.
3 OpenFOAM-1.5-dev is an extended version, distributed via svn from

sourceforge.net, and can be found at
http://openfoam-extend.wiki.sourceforge.net/

4 User contributions at
http://openfoam-extend.wiki.sourceforge.net/, with corresponding
descriptions at http://openfoamwiki.net

Eric Paterson/ Different versions

www.openfoam.org
http://www.openfoam.com/download/git.php
http://openfoam-extend.wiki.sourceforge.net/
http://openfoam-extend.wiki.sourceforge.net/
http://openfoamwiki.net

PENN STATE
Some more details on OpenFOAM-1.6

Download and installation instructions available at www.openfoam.org

Source code

Single and double precision binaries for 32 and 64 bits, meaning that ideally you
don’t have to compile the code, but in practice it is always best to compile it on
your own machine.

Third-Party source code and binaries

Never updated with bug fixes!

Eric Paterson/ Different versions

PENN STATE
Some more details on OpenFOAM-1.6.x

Same as OpenFOAM-1.6, but with bug fixes!

Check out source code using the Git version control system (instructions at
www.openfoam.org)

No binaries distributed - you have to compile everything!

Use the same Third-Party products as OpenFOAM-1.6

Update your installation using Git, and re-compile to have the latest bug-fixed
version.

Eric Paterson/ Different versions

PENN STATE
Some more details on OpenFOAM-1.5-dev

OpenFOAM-1.5-dev is maintained by a small, but growing, group of OpenFOAM
developers

Hosted at SourceForge
(http://openfoam-extend.wiki.sourceforge.net/)

Exact location:
http://openfoam-extend.svn.sourceforge.net/viewvc/openfoam-extend/trunk/Core/OpenFOAM-1.5-dev/

Has all the features in OpenFOAM-1.5.x, but also many extensions.

Check out source code using the Svn version control system (instructions at the
link above)
Basically:
svn checkout <theLinkAboveButWith’svnroot’InsteadOf’viewvc’>

No binaries distributed - you have to compile everything!

Use the same Third-Party products as OpenFOAM-1.5

Update your installation using Svn, and re-compile to have the latest version.
Update by going to the OpenFOAM-1.5-dev directory, and type:
svn update

This is the version used in this training.

Eric Paterson/ Different versions

http://openfoam-extend.wiki.sourceforge.net/
http://openfoam-extend.svn.sourceforge.net/viewvc/openfoam-extend/trunk/Core/OpenFOAM-1.5-dev/

PENN STATE
Some more details on user contributions

The OpenFOAM-extend project at SourceForge:
http://openfoam-extend.wiki.sourceforge.net/ was developed by
OpenFOAM users to allow user contributions.

See:
http://openfoam-extend.svn.sourceforge.net/viewvc/openfoam-extend/trunk/

The main contribution is OpenFOAM-1.5-dev, click on Core

Many plug-in libraries and applications can be found, click on Breeder-1.5

The OpenFOAM Wiki, http://openfoamwiki.net/, is the place for
descriptions of the code in the OpenFOAM-extend project.

OpenFOAM Working Groups share files and information at OpenFOAM-extend
and in the OpenFOAM Wiki, see:
http://openfoam-extend.svn.sourceforge.net/viewvc/openfoam-extend/trunk/Breeder_1.5/OSIG/

http://openfoamwiki.net/index.php/Main_Special_Interest_Groups

Eric Paterson/ Different versions

http://openfoam-extend.wiki.sourceforge.net/
http://openfoam-extend.svn.sourceforge.net/viewvc/openfoam-extend/trunk/
http://openfoamwiki.net/
http://openfoam-extend.svn.sourceforge.net/viewvc/openfoam-extend/trunk/Breeder_1.5/OSIG/
http://openfoamwiki.net/index.php/Main_Special_Interest_Groups

PENN STATE
OpenFOAM installation

OpenFOAM can be installed for a single user (local installation), or for many users
(network installation):

1 Local installation: This is the default, and most common way of installing
OpenFOAM. The installation will be located in
$HOME/OpenFOAM/OpenFOAM-1.5-dev. Benefits: Each user will ’own’ their
own installation and may update it any time. Drawbacks: Requires extra disk
space if there are several users with their own installations, and all users must
know how to install OpenFOAM and the Third-Party products.

2 Network installation: This installation is suitable when a group of people is
supposed to use OpenFOAM, and when not everyone want to learn how to install
OpenFOAM. All users will use exactly the same installation. Benefits: A single
installation for each version of OpenFOAM, maintained by your IT-staff.
Drawbacks: You have to be nice to your IT-staff so that they quickly install new
versions and keep all versions updated.

Once the installation is there, it is just a matter of setting an environment variable in a
file to point at the installation directory. The user will notice no difference (just a tiny
one, which we will discuss later).

Eric Paterson/ Installation, compilation, and environment

PENN STATE
Local installation (OpenFOAM-1.5, 32 bit, double precision)

The OpenFOAM-1.5 installation procedure is here described using a number of Linux
commands (don’t do it now!). This is based on the descriptions at
www.openfoam.org.

mkdir $HOME/OpenFOAM
cd $HOME/OpenFOAM
wget http://dfn.dl.sourceforge.net/sourceforge/foam/OpenFOAM-1.5.General.gtgz
wget http://dfn.dl.sourceforge.net/sourceforge/foam/OpenFOAM-1.5.linuxGccDPOpt.gtgz
wget http://dfn.dl.sourceforge.net/sourceforge/foam/ThirdParty.General.gtgz
wget http://dfn.dl.sourceforge.net/sourceforge/foam/ThirdParty.linuxGcc.gtgz
tar xzf *; rm *.gtgz
. $HOME/OpenFOAM/OpenFOAM-1.5/etc/bashrc

Done!

Well, you might have problems with some ThirdParty products such as Paraview,
which requires exactly the correct version of Qt, or gcc, which requires mpfr. Those
are not actually OpenFOAM, so we will not discuss those issues here. Consult
www.openfoam.org, the OpenFOAM Forum, or your IT-staff.

The links shown above can be found by looking at the preferences of the files you
download at www.openfoam.org.

The final line sets up the OpenFOAM environment, which will be discussed later.

Eric Paterson/ Installation, compilation, and environment

PENN STATE
Network installation (don’t do it now!)

Make sure that all the users are able to reach the directory where OpenFOAM will be
installed (for instance /OpenFOAM). Change the first two lines in the previous slide to:

mkdir /OpenFOAM
cd /OpenFOAM

wget and un-tar all the files as in the previous slide.

Make the /OpenFOAM/OpenFOAM-1.5/etc/bashrc file point at the network
installation by changing the line saying foamInstall=$HOME/$WM_PROJECT to
foamInstall=/$WM_PROJECT

Instead of the last line in the previous slide, the user must source the installed bashrc
file:

. /OpenFOAM/OpenFOAM-1.5/etc/bashrc

We will have a deeper look at the effect of the sourcing of the bashrc file later, but
among other things, it will define some environment variables (such as WM_PROJECT,
WM_PROJECT_INST_DIR, and WM_PROJECT_DIR) that will be used in the coming
slides.

Eric Paterson/ Installation, compilation, and environment

PENN STATE
The tiny difference between local and network installations

There is a global control file, $WM_PROJECT_DIR/etc/controlDict, that each user
might want to modify to some personal settings.

When OpenFOAM 1.5-dev starts, it will be looking at the following locations for a valid
controlDict file, in that specific order. As soon as a match is found, this is the
controlDict file that will be used.

1 ˜/.OpenFOAM/1.5-dev/controlDict (user file: version dependent)
2 ˜/.OpenFOAM/controlDict (user file: version independent)
3 $WM_PROJECT_INST_DIR/site/1.5-dev/controlDict (site file: version

dependent, where site is simply the string ’site’)
4 $WM_PROJECT_INST_DIR/site/controlDict (site file: version independent,

where site is simply the string ’site’)
5 $WM_PROJECT_DIR/etc/controlDict (default installation file: version

dependent)

Advanced information: Have a look at: Foam::dotFoam() in the file $WM_PROJECT_DIR/src/OSspecific/Unix/Unix.C

In other words, do the following to get a personal global controlDict file:

mkdir -p ˜/.OpenFOAM/1.5-dev
cp $WM_PROJECT_DIR/etc/controlDict ˜/.OpenFOAM/1.5-dev

Eric Paterson/ Installation, compilation, and environment

PENN STATE
Compile all of OpenFOAM yourself

It is usually good to compile all of OpenFOAM yourself. The three main reasons are:
1 OpenFOAM-1.6 is not updated with bug fixes, so it is not really useful
2 OpenFOAM-1.6.x is only distributed as source code
3 OpenFOAM-1.5-dev is only distributed as source code

Once the OpenFOAM source code is there, and all ThirdParty products are up and
running, you simply do (don’t do it now!):

. $HOME/OpenFOAM/OpenFOAM-1.5-dev/etc/bashrc
cd $HOME/OpenFOAM/OpenFOAM-1.5-dev
./Allwmake

It is also possible to re-compile parts of OpenFOAM. Simply find an occurance of
Allwmake, and run it the same way as above.

This is similar for all versions, OpenFOAM-1.5, OpenFOAM-1.5.x, and
OpenFOAM-1.5-dev.

Eric Paterson/ Installation, compilation, and environment

PENN STATE
How to get OpenFOAM-1.5-dev

To conclude the section of different versions, here are the commands to download and
compile OpenFOAM-1.5-dev, if you already have a working ThirdParty installation
(don’t do it now!):

cd $HOME/OpenFOAM
svn co https://openfoam-extend.svn.sourceforge.net/svnroot/\
openfoam-extend/trunk/Core/OpenFOAM-1.5-dev
cd OpenFOAM-1.5-dev
. $HOME/OpenFOAM/OpenFOAM-1.5-dev/etc/bashrc
./Allwmake

(note that the ’\’ at the end of the second line means that the text on the third line
should be put right after the ’/’, without spaces)

Update the installation by:

cd $HOME/OpenFOAM/OpenFOAM-1.5-dev
svn update
./Allwmake

Read more at: http://openfoam-extend.wiki.sourceforge.net/

Eric Paterson/ Installation, compilation, and environment

PENN STATE
Sourcing bashrc

(In the following we assume that OpenFOAM-1.5-dev is installed in
$HOME/OpenFOAM, and that you are using bash. Don’t do the following, it has
already been done for you!)

The OpenFOAM environment is set in
$HOME/OpenFOAM/OpenFOAM-1.5-dev/etc/bashrc

The usual way to source this file is to add a line in $HOME/.bashrc, saying:

. $HOME/OpenFOAM/OpenFOAM-1.5-dev/etc/bashrc

When you open a new Konsol, the $HOME/.bashrc file will be sourced, which in turn
will source the OpenFOAM bashrc and set up the OpenFOAM environment.

Eric Paterson/ Installation, compilation, and environment

PENN STATE
Environment variables

Sourcing the OpenFOAM bashrc file loads all the needed environmental variables

For example, the ones we have used so far:

$WM_PROJECT is just the string ’OpenFOAM’

$WM_PROJECT_INST_DIR is the OpenFOAM directory with all the installed
versions

$WM_PROJECT_DIR is the directory of the currently used version

$WM_PROJECT_USER_DIR is the user directory, where developments or cases
can be located (you don’t have to use this directory).

Learn to use the environment variables to be less dependent on which version you are
using!

You can find all enviroment variables by typing

env

or, for instance

env | grep WM
env | grep FOAM

to see only those which contain the string ’WM’ or ’FOAM’

Eric Paterson/ Installation, compilation, and environment

PENN STATE
Common user modifications in bashrc

The most common is to modify the installation directory, as we discussed earlier:

foamInstall=/$WM_PROJECT

which will then set environment variable WM_PROJECT_INST_DIR.

If the ThirdParty directory is not in the default location, modify:

export WM_THIRD_PARTY_DIR=$WM_PROJECT_INST_DIR/ThirdParty

To add a new compiler option, modify WM_COMPILER - this variable is used when
setting up the compiler paths, and also for compilation specific directory names.

Choose 32 or 64 bits (both are possible on 64 bit architectures) by setting
WM_ARCH_OPTION. Appears in directory names.

Choose single or double precision by setting WM_PRECISION_OPTION. Appears
in directory names.

Choose optimal (Opt), debug (Debug), or profiling (Prof) compilation by setting
WM_COMPILE_OPTION. Appears in directory names.

Choose message passing interface by setting WM_MPLIB (default OPENMPI).

Enable halt on floating-point exception by setting FOAM_SIGFPE.

These are used to set up compiler options etc., and some other files are sourced...

Eric Paterson/ Installation, compilation, and environment

PENN STATE
Other files that are sourced

There are mainly three other files that are sourced from bashrc:

$WM_PROJECT_DIR/etc/settings.sh
$WM_PROJECT_DIR/etc/aliases.sh
$WM_PROJECT_DIR/etc/apps/paraview3/bashrc

In settings.sh, you can specify how your choice of WM_COMPILER and
WM_MPLIB should be interpreted, or if the system compiler should be used.

In aliases.sh, some useful aliases are set (see next slide)

In apps/paraview3/bashrc, the environment for paraview is set.

Eric Paterson/ Installation, compilation, and environment

PENN STATE
Useful aliases

An alias is an abbreviation of a one-line command. These are defined in the
OpenFOAM-1.5-dev environment:
alias wm64=’export WM_ARCH_OPTION=64; . $WM_PROJECT_DIR/etc/bashrc’
alias wm32=’export WM_ARCH_OPTION=32; . $WM_PROJECT_DIR/etc/bashrc’
alias wmSP=’export WM_PRECISION_OPTION=SP; . $WM_PROJECT_DIR/etc/bashrc’
alias wmDP=’export WM_PRECISION_OPTION=DP; . $WM_PROJECT_DIR/etc/bashrc’
alias wmSchedON=’export WM_SCHEDULER=$WM_PROJECT_DIR/wmake/wmakeScheduler’
alias wmSchedOFF=’unset WM_SCHEDULER’
alias src=’cd $FOAM_SRC’
alias lib=’cd $FOAM_LIB’
alias run=’cd $FOAM_RUN’
alias foam=’cd $WM_PROJECT_DIR’
alias foamsrc=’cd $FOAM_SRC/$WM_PROJECT’
alias foamfv=’cd $FOAM_SRC/finiteVolume’
alias app=’cd $FOAM_APP’
alias util=’cd $FOAM_UTILITIES’
alias sol=’cd $FOAM_SOLVERS’
alias tut=’cd $FOAM_TUTORIALS’

For instance, if you type

src

you will actually do

cd $FOAM_SRC

Eric Paterson/ Installation, compilation, and environment

PENN STATE
OpenFOAM directory organization

We will use the Linux command tree to examine the directory structure:

tree -L 1 -d $WM_PROJECT_DIR

yielding:

$WM_PROJECT_DIR
|-- applications
|-- bin
|-- doc
|-- etc
|-- lib
|-- src
|-- tutorials
‘-- wmake

In WM_PROJECT_DIR you can also find ReleaseNotes etc., but most importantly:

Allwmake

which compiles all of OpenFOAM, as discussed earlier.

Eric Paterson/ Directory organization

PENN STATE
The applications directory

tree -L 1 -d $WM_PROJECT_DIR/applications

yields:

$WM_PROJECT_DIR/applications
|-- bin
|-- solvers
|-- test
‘-- utilities

Here is a short description of the applications directory contents:

bin contains the binaries generated when compiling the applications

solvers contains source code for the distributed solvers

test contains source code that test and show example of the usage of some of
the OpenFOAM classes

utilities contains source code for the distributed utilities

There is also an Allwmake script, which will compile all the contents of solvers and
utilities

Eric Paterson/ Directory organization

PENN STATE
The src directory

This directory contains the source code for all the libraries

It is divided in different subdirectories each of them can contain several libraries

The most relevant are:

finiteVolume. This library provides all the classes needed for the finiteVolume
discretization, such as fvMesh, divergence, laplacian, gradient discretization
operators, matrix solvers, and boundary conditions.

OpenFOAM. This library includes the definitions of the containers used for the
operations, the field definitions, the declaration of the mesh and of all the mesh
features such as zones and sets

turbulenceModels which contains several turbulence models

engine declaration of classes for engine simulation

dynamicMesh for moving meshes algorithms

Eric Paterson/ Directory organization

PENN STATE
The bin, doc, etc, lib, and tutorials directories

The bin directory contains shell scripts, such as paraFoam, foamNew, foamLog ...

The doc directory contains the documentation of OpenFOAM:

Programmers and User Guide

Doxygen generated documentation in html format

Usage:

acroread $WM_PROJECT_DIR/doc/Guides-a4/UserGuide.pdf
acroread $WM_PROJECT_DIR/doc/Guides-a4/ProgrammersGuide.pdf
mozilla file://$WM_PROJECT_DIR/doc/Doxygen/html/index.html

The etc directory contains environment set-up files, global OpenFOAM instructions,
and default thermoData.

The lib directory contains the binaries of the dynamic libaries.

The tutorials directory contains example cases for each solver.

Eric Paterson/ Directory organization

PENN STATE
The wmake directory

OpenFOAM uses a special make command: wmake.

wmake understands the file structure in OpenFOAM and has some default compiler
directives that are set in the wmake directory. There is also a command, wclean, that
cleans up (some of) the output from the wmake command.

If you added a new compiler name in the bashrc file, you should also tell wmake how
to interpret that name. In wmake/rules you find the default settings for the available
compilers.

You can also find some scripts that are useful when organizing your files for
compilation, or for cleaning up.

Eric Paterson/ Directory organization

PENN STATE
User directory organization

Some of the OpenFOAM environment is set up for a specific user directory
organization, in $WM_PROJECT_USER_DIR.

In a clean installation of OpenFOAM you find there two directories.
tree -L 1 -d $WM_PROJECT_USER_DIR yields

$WM_PROJECT_USER_DIR
|-- applications
‘-- lib

In applications, it is recommended to put user developed applications in the same
structure as in $WM_PROJECT_DIR/applications

In $WM_PROJECT_DIR/applications/bin, the binaries of the user developed
applications will be located

In lib, the binaries of the user developed libraries will be located

It is recommended to create two more directories:

$WM_PROJECT_USER_DIR/run
$WM_PROJECT_USER_DIR/src

Place user developed library source code in src directory, with the same directory
structure as in $FOAM_SRC, and case files in the run directory.

Eric Paterson/ Directory organization

PENN STATE
User development compilation procedure

We have already discussed how to compile the installation using the Allrun script.
Now we will discuss how to compile our own developments.

In the previous slides we learned where to find the source code for applications and
libraries.

Now we will learn the basic procedure how to compile any of those if they have been
updated, or to copy one of them and compile it to implement a new application or
library.

You can locate the main directory of applications or libraries by looking for Make
directories

There is a specific Make directory for each application

The libraries are however grouped together as larger libraries

We will now have a look at the principles of compilation of applications and libraries

Eric Paterson/ User development compilation procedure

PENN STATE
But first a recommendation

Do not modify anything in the installation, except for updates!

You can do everything you need to do with your own copies, and then you don’t risk to
mess things up.

Another recommendation is to keep the same directory structure in your copies, as the
original code, so that you only have to keep track of one directory structure.

Eric Paterson/ User development compilation procedure

PENN STATE
Compilation of user developed applications

Find the directory of the application you want to modify and compile
Copy it to your working directory
Re-name the directory name and file names (not necessary, but nice)
Modify Make/files to your new names, and change FOAM_APPBIN to
FOAM_USER_APPBIN

Type wclean and wmake

Example of how to copy and compile the icoFoam solver as myIcoFoam:

cd $FOAM_APP
cp -r --parents solvers/incompressible/icoFoam \

$WM_PROJECT_USER_DIR/applications
cd $WM_PROJECT_USER_DIR/applications/solvers/incompressible/
mv icoFoam myIcoFoam
cd myIcoFoam
mv icoFoam.C myIcoFoam.C
sed -i s/icoFoam/myIcoFoam/g Make/files
sed -i s/FOAM_APPBIN/FOAM_USER_APPBIN/g Make/files
wclean
wmake

Eric Paterson/ User development compilation procedure

PENN STATE
Compilation of user developed libaries (1/2)

Usually you would like to do a small modification to an existing library

Find the directory of the library you want to modify and copy it to your working directory

Find the Make directory that is used when compiling the original library and copy it to
your working directory

Remove all lines, in Make/files, that don’t correspond to the piece of the library you
are compiling

Add a line in Make/options saying -I and the path to the lnInclude file that was
located next to the original Make directory. This step is necessary since wmake
implicitly searches for include files in the directory where the compilation is started, and
now we have moved the compilation procedure elsewhere, and must thus explicitly
point at the lnInclude directory.

Re-name folders, files and entries in Make/files, just as when compiling
applications.

Re-name the class name in the files so that it can be distinguished from the original
one.

Type wmake libso

Eric Paterson/ User development compilation procedure

PENN STATE
Compilation of user developed libaries (2/2)

Here is an example of how to copy and compile the kEpsilon turbulence model:

foam
cp -r --parents src/turbulenceModels/RAS/incompressible/\
{kEpsilon,Make} $WM_PROJECT_USER_DIR
cd $WM_PROJECT_USER_DIR/src/turbulenceModels/RAS/incompressible
wclean
rm -rf Make/linux*
mv kEpsilon mykEpsilon
cd mykEpsilon
mv kEpsilon.C mykEpsilon.C
mv kEpsilon.H mykEpsilon.H
sed -i s/kEpsilon/mykEpsilon/g mykEpsilon.*
cd ..
sed -i s/els/\
"els \\\ \n-I\$(LIB_SRC)\/turbulenceModels\/RAS\/incompressible\/lnInclude"\
/g Make/options
echo "mykEpsilon/mykEpsilon.C" > Make/files
echo "LIB = \$(FOAM_USER_LIBBIN)/libmyIncompressibleRASModels" >> Make/files
wmake libso

We will discuss later how to use new libraries.

Eric Paterson/ User development compilation procedure

PENN STATE
The lnInclude directory

In order to make it easier for the compiler to find the include-files, they are linked to
from lnInclude. This linking is done when running wmake libso.

The compiler searches for the included header files in the following order
1 Explicit paths set in Make/options

2 A local lnInclude directory, i.e. in the directory where wmake is run
3 The local directory, i.e. the directory where wmake is run
4 The $WM_PROJECT DIR/src/OpenFOAM/lnInclude directory;
5 The $FOAM_SRC/OSspecific/Unix/lnInclude directory

Eric Paterson/ User development compilation procedure

PENN STATE
The Make directory

The Make directory contains instructions on how to compile the code. The original
instructions are arranged in two files:

files

options

We will discuss these in the coming slides.

After compilation there will also be one or several directories, containing compilation
information derived in the compilation procedure as well as the object files:

linuxGccDPOpt

linux64GccDPOpt

linuxGccDPDebug

linuxGccDPProf

There will be one such directory for each kind of compilation that has been made.

Eric Paterson/ User development compilation procedure

PENN STATE
The Make/files file

The Make/files file consists of a list of relative paths and names of the files to be
compiled

The location and name of the final binary is specified by EXE = <path>/<name> for
applications, and LIB = <path>/<name> for libraries.

OpenFOAM offers two recommended choices for the path of application and library
binaries, respectively:

1 $FOAM_APPBIN for standard release applications
2 $FOAM_USER_APPBIN for user developed applications

1 $FOAM_LIBBIN for standard release libraries
2 $FOAM_USER_LIBBIN for user developed libraries

Eric Paterson/ User development compilation procedure

PENN STATE
The Make/options file

The Make/options file contains the full directory paths to include files and libraries

EXE_INC = \
-I$(LIB_SRC)/finiteVolume/lnInclude

The directory names are preceeded by the -I flag and the syntax uses the \ to
continue the EXE_INC across several lines, with no \ after the final entry

EXE_LIBS = \
-lfiniteVolume \
-llduSolvers

The libOpenFOAM.so library is implicitly used, and the libraries are implicitly
searched for in $FOAM_LIBBIN. Other paths can be added using the -L flag in the
EXE_LIBS section in the Make/options file.

Eric Paterson/ User development compilation procedure

PENN STATE
Cleaning up after compilation: wclean and rmdepall

wmake creates some files and folders, as we have seen.

One file that has not been mentioned yet is a *.dep file, which contains a list of files
that the compilation depends on.

The *.dep file and the Make/$WM_OPTIONS directory can be removed by typing:

wclean

This is a way to make sure that re-complation will take place next time wmake is run.

If the local lnInclude directory should also be deleted, type:

wclean lib

rmdepall removes all dependency .dep files recursively down the directory tree from
the point at which it is executed. It is useful when updating OpenFOAM libraries

Eric Paterson/ User development compilation procedure

