CAELinux : an open source engineering platform

What is CAELinux ? A CAE workstation on a disk

o CAELinux in brief

- CAELinux is a « Live» Linux distribution pre-packaged with the main open source Computer Aided Engineering software available today.
- CAELinux is free and open source, for all usage, even commercial (*)
- It is based on Ubuntu LTS (12.04 64bit for CAELinux 2013)
- It covers all phases of product development: from mathematics, CAD, stress / thermal / fluid analysis, electronics to CAM and 3D printing
- How to use CAELinux:

CAELinux: History and present

- o Past and present:
 - CAELinux started in 2005 as a personal project for my own use
 - Motivation was to promote the use of scientific open source software in engineering by avoiding the complexities of code compilation and configuration. And also, I wanted to have a reference installation of Code-Aster and Salome that I could install for my own use.
 - Until now, 11 versions have been released in ~9 years. One release per year (except 2014).
 - Today, the latest version, CAELinux 2013, has reached 63'000 downloads in 1 year on sourceforge.net.
 - CAELinux is used for teaching in universities, in SME's for analysis and by many occasional users, hobbyists, hackers and Linux enthusiasts.
 - The main distribution is still developed by myself on my free time which explains the slow updates.
 - A community has formed around CAELinux with many contributors participating in the documentation, tutorials and support on forums and wiki

CAD/electronics and system simulation: FreeCAD, gEda, Arduino, Scilab/Xcos

Δ

Mathematical modeling and programming: Octave, Maxima, R, Python/Scipy

CFD: Salome / OpenFOAM or Code-Saturne

Thermo mechanics: Salome / Elmer or Code-Aster or Calculix

Biomedical image analysis and modeling: ITKSnap / VoxelMesher/ Calculix

Joël Cugnoni, www.caelinux.com

What is in CAELinux ?

CAE analysis process

- Design, Meshing , Pre-pro
 - FreeCAD
 - Salome
 - GMSH
 - Netgen
 - HelyxOS
 - EnGrid
 - Discretizer
 - ElmerGUI
 - CGX

. . .

o Solvers:

- Code-Aster (FE)
- Code-Saturne (CFD)
- Syrthes (FE, thermo)
- OpenFOAM (FV, CFD/multiphysics)
- Elmer (FE / Multiphysics)
- Impact (FE)
- Gerris (FV, CFD)
- MBDyn (Multibody)

•

- Visu, post-pro
 - Salome
 - GMSH
 - Paraview
- Math / plotting
 - Octave
 - Scilab
 - Maxima
 - R
 - Scipy
 - Gnuplot

Code-Aster Workflow in CAELinux

- •Two versions of Code-Aster are available in CAELinux:
- STA and NEW from Salome-Meca with OpenMP parallelism (MULT_FRONT solver)
- Custom NEW MPI version with PETSC & MUMPS parallel solvers in /opt/aster

CAELinux / Aster documentation: how to get started

o Getting started:

- CAELinux Wiki (<u>http://www.caelinux.org</u>): many valuable tutorials, some interactive, some on PDF, different level of complexity. Many user contribution in "Contrib" section!
- Code-Aster.org: free & high quality Training material (<u>http://www.code-aster.org/V2/spip.php?article282</u>)
- Salome-Platform.org: Salome tutorials for all levels (<u>http://salome-platform.org/user-section/salome-tutorials</u>)
- Documentation on Code-Aster.org :
 - Start with U2 methodological documents, very valuable guidelines & tips
 - Identify the main commands to use and read the U4 docs
 - In case you need it, read the corresponding Reference doc to understand the theory behind
 - Find an validation test (V doc) or search (grep?) in "Astest" folder for a COMM file that is close to what you need, try to replicate it and check.

Salome / Code-Aster: examples

Optimization: Salome + Python + Scipy => Parametric FEA => Code-Aster solver

Flexibility of the platform: Python used for external optimization loop (Scipy), in Salome for parametric CAD/FE mesh & within Aster solver for custom post-pro

Fluid-structure interactions

Added mass, wet eigen frequencies and divergence of an hydrofoil

Advantage: unique possibilities of Code-Aster to compute added mass, stiffness and damping from a potential theory.

Issue: hard to validate because of lack of experimental data...

Future work & needs (Research at EPFL)

o Migrate homogenization methods developed at LMAF to Code-Aster

Future work & needs (Research at EPFL)

o Migrate LMAF's bone modeling tools (VoxelMesher) to Code-Aster

Opportunity:

develop an open source platform for biomedical engineering **Need:**

-time to write a mesh writer to Aster (MAIL format) & implement element-wise elastic properties in a COMM file using an external file as input -cohesive contact models for interface modeling, Drucker-Prager plasticity with damage and efficient parallel solvers (>3MDof)

Future work & needs (Research at EPFL)

Max envelop of layerwise criteria

- Further development of Composite modeling tools:
 - Regression, resorption of features in this field recently
 - Improved & simplified inputs for multilayer shells (one MACRO?)
 - Improved performance & simplicity for multilayer shell post-processing and composite failure criteria : implementation of Hashin/Puck, Tsai-Hill, Tsai-Wu, LARC, Hoffman failure criteria
 - Faster post-processing (not layer by layer): computation of envelope of maximum inverse safety factor and critical ply number and failure type through all layers => one field with all relevant results
 - Further development of mixed mode cohesive models for delamination simulation

Code-Aster and CAELinux: experience

• What works well:

- Versatility and flexibility of Code-Aster / Salome / GMSH environment is great
- Many complex simulations are possible, many tuning options
- Very open to code coupling and file transfers, integration with external tools and custom developments in Python or Fortran
- Requires a trained user which knows what is behind (this is a + in the end)
- Diffusion of Aster through Salome-Meca is great
- Frequent updates of Code-Aster, valuable forum and feedback from Devs
- Aster is at the fore front of research in some domains but remains a generalist FEA solver with excellent multiphysics capabilities
- Many improvement in parallel solution performance recently, becomes also more robust with contacts
- For CAELinux: it has found a great audience, is used worldwide!

Code-Aster and CAELinux: experience

- What could be improved:
 - English doc is hard to read... start an open human « translation project »?
 - More methodological docs & intermediate level tutorials to ease learning
 - Salome Wizards could be expanded to help the transition between beginner and expert levels
 - Small community, needs more interactions to keep it alive
 - Default settings in non-linear solution and automatic time stepping could be improved for better performance. Trying to replicate (and set as default) Abaqus time stepping / convergence analysis would be highly beneficial.
 - Display performance issues in Salome Mesh & Visu but improved recently
 - Some inconsistencies in post-processing, issues with Von Mises in tetrahedra, slow post-processing (CALC_CHAMP) compared to solver...
 - Deploying Linux in companies remains an issue, even with Virtual Machines
 - More synergies between actors should be found to mutualize development / training and support
 - For CAELinux: should migrate to an open development model

CAELinux: Development and future

o Development process:

- CAELinux uses Ubuntu LTS 64 bit as a base and Remastersys to build the final ISO image of the distribution
- Use as much as possible existing Debian/Ubuntu packages, but some are outdated or lacking features like parallel solvers.
- Build « hand made » packages for key CAE software such as Code-Aster, Code-Saturne, Elmer to use recent versions and enable parallel MPI solvers and optimized math libraries
- Building a reference image with all chosen packages and final customization (desktop layout, shortcuts, docs & tutorials) using Remastersys.
- o Future
 - Development of each package and production / testing of the final distribution is still mostly manual and iterative but ensures good stability.
 - Moving to collaborative development is a goal but transition is difficult
 - a new release is planned for Q4 2015 based on Ubuntu 14.04.

Merci de votre attention !

Other workflows: Code-Saturne

CAD + Meshing in Salome => MED mesh => Code-Saturne Wizard + GUI => Code-Saturne Solver (MPI) => Post pro in Salome or Paraview

Joël Cugnoni, www.caelinux.com

19.02.2015

OpenFOAM Workflow for CFD

Example: EnGrid – OpenFOAM (CFD)- Paraview

Exemple: Discretizer::Setup – SnappyHexMesh - OpenFOAM - Paraview

Multiphysics simulation workflow with Elmer (FE)

Exemple: Salome (unv) - ElmerGUI – Elmer

Echangeur de chaleur tubulaire: Navier-Stokes + Transfert Chaleur (cond. + conv.)

How to deploy / use CAELinux ?

CAELinux in the Cloud on Amazon EC2

o Start instances of CAELinux from aws.amazon.com

CAELinux in the Cloud: remote desktop

